CS 59 is a thermally improved three-chamber system for windows and doors. The system is available in a variety of aesthetic shapes to match the current architectural styles whilst offering all types of both inward and outward opening windows and doors.

Different inner and outer colours are possible.
TECHNICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Style variants</th>
<th>FUNCTIONAL</th>
<th>RENAISSANCE</th>
<th>SOFTLINE</th>
<th>HIDDEN VENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. visible width inward opening window</td>
<td>Frame 51 mm</td>
<td>51 mm</td>
<td>51 mm</td>
<td>76 mm</td>
</tr>
<tr>
<td></td>
<td>Vent 33 mm</td>
<td>33 mm</td>
<td>33 mm</td>
<td>not visible</td>
</tr>
<tr>
<td>Min. visible width outward opening window</td>
<td>Frame 17.5 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vent 76 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Min. visible width inward opening flush door</td>
<td>Frame 67 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vent 77 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Min. visible width outward opening flush door</td>
<td>Frame 42 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Vent 102 mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Min. visible width T-profile</td>
<td>76 mm</td>
<td>76 mm</td>
<td>76 mm</td>
<td>126 mm</td>
</tr>
<tr>
<td>Overall system depth window</td>
<td>Frame 59 mm</td>
<td>59 mm</td>
<td>59 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td></td>
<td>Vent 59 mm</td>
<td>68 mm</td>
<td>68 mm</td>
<td>54.5 mm</td>
</tr>
<tr>
<td>Rebate height</td>
<td>25 mm</td>
<td>25 mm</td>
<td>25 mm</td>
<td>18.5 mm</td>
</tr>
<tr>
<td>Glass thickness</td>
<td>up to 35 mm</td>
<td>up to 35 mm</td>
<td>up to 35 mm</td>
<td>up to 31 mm</td>
</tr>
<tr>
<td>Glazing method</td>
<td>dry glazing with EPDM or neutral silicones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal insulation</td>
<td>14 mm omega-shaped fibreglass reinforced polyamide strips</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCES

ENERGY

Thermal Insulation (1)
EN 10077-2
Uf-value between 3.0 W/m²K and 3.7 W/m²K, depending on the frame/vent combination

COMFORT

Acoustic performance (2)
EN ISO 140-3; EN ISO 717-1
Rw (C; Ctr) = 36 (-2; -6) dB / 39 (-1; -4) dB, depending on glazing type

Air tightness, max. test pressure (3)
EN 1026; EN 12207
1 (150 Pa)
2 (300 Pa)
3 (600 Pa)
4 (600 Pa)

Water tightness (4)
EN 1027; EN 12208
1A (0 Pa)
2A (50 Pa)
3A (50 Pa)
4A (150 Pa)
5A (200 Pa)
6A (250 Pa)
7A (300 Pa)
8A (450 Pa)
9A (600 Pa)
E (750 Pa)

Wind load resistance, max. test pressure (5)
EN 12211; EN 12210
1 (400 Pa)
2 (800 Pa)
3 (1200 Pa)
4 (1600 Pa)
5 (2000 Pa)
Exxx (> 2000 Pa)

Wind load resistance to frame deflection (5)
EN 12211; EN 12210
A (≤ 1/150)
B (≤ 1/200)
C (≤ 1/300)

SAFETY

Burglar resistance (6)
ENV 1627 - ENV 1630
WK 1
WK 2
WK 3 (doors)

(1) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame.
(2) The sound reduction index (Rw) measures the capacity of the sound reduction performance of the frame.
(3) The air tightness test measures the volume of air that would pass through a closed window at a certain air pressure.
(4) The water tightness test measures the volume of water that would pass through a closed window at a certain air pressure.
(5) The wind load resistance is a measure of the profile's structural strength and is tested by applying increasing levels of air pressure to simulate the wind force. There are up to five levels of wind resistance (1 to 5) and three deflection classes (A,B,C). The higher the number, the better the performance.
(6) The burglar resistance is tested by static and dynamic loads, as well as by simulated attempts to break in using specified tools.